Sagify & Superwise integration

Superwise team

March 24th, 2022 min read

March 24th, 2022

min read

Superwise and Sagify integration

A new integration just hit the shelf! Sagify users can now integrate with the Superwise model observability platform to automatically monitor models deployed with Sagify data drift, performance degradation, data integrity, model activity, or any other customized monitoring use case.

Why Sagify?

Sagemaker is like a Swiss army knife. You get anything that you could possibly need to train and deploy ML models, but sometimes you just need a knife, and this is where Sagify comes in. Sagify is an open-source CLI tool for Sagmaker that simplifies training and deploying ML models down to two functions, train and predict. This abstracts away a lot of the low-level engineering tasks that come along with Sagemaker.

What you get with Sagify + Superwise

Now that Sagify has simplified Sagemaker training and deployment, the Sagify & Superwise integration streamlines the process of registering your new model and training baseline to Superwise’s model observability platform. This lets you hit the ground running because once you’ve initialized, you get train-deploy-monitor all in one run. Superwise will infer all relevant metrics out-of-the-box (In addition, you can also add customized metrics unique to your use case and business). This way, you don’t need to invest time in configuring model metrics. You can focus on detecting issues like drift, performance degradation, data integrity, etc., to resolve issues and improve your models faster.

Everything you need to know about AI direct to your inbox

Superwise Newsletter

Superwise needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, please review our privacy policy.


Featured Posts

Drift in machine learning
May 5, 2022

Everything you need to know about drift in machine learning

What keeps you up at night? If you’re an ML engineer or data scientist, then drift is most likely right up there on the top of the list. But drift in machine learning comes in many forms and variations. Concept drift, data drift, and model drift all pop up on this list, but even they

Read now >
Everything you need to know about drift in machine learning
July 12, 2022

Concept drift detection basics

This article will illustrate how you can use Layer and Amazon SageMaker to deploy a machine learning model and track it using Superwise.

Read now >
Concept drift detection basics
Data Drift
August 31, 2022

Data drift detection basics

Drift in machine learning comes in many shapes and sizes. Although concept drift is the most widely discussed, data drift is the most frequent, also known as covariate shift. This post covers the basics of understanding, measuring, and monitoring data drift in ML systems. Data drift occurs when the data your model is running on

Read now >
Data drift detection basics